Nuprl Lemma : req_int_terms_inversion
∀[t1,t2:int_term()]. t1 ≡ t2 supposing t2 ≡ t1
Proof
Definitions occuring in Statement :
req_int_terms: t1 ≡ t2
,
int_term: int_term()
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
req_int_terms: t1 ≡ t2
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
real_wf,
req_witness,
real_term_value_wf,
req_int_terms_wf,
int_term_wf,
req_weakening,
req_functionality
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
lambdaFormation,
functionEquality,
intEquality,
extract_by_obid,
hypothesis,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
isectElimination,
functionExtensionality,
applyEquality,
independent_functionElimination,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
productElimination
Latex:
\mforall{}[t1,t2:int\_term()]. t1 \mequiv{} t2 supposing t2 \mequiv{} t1
Date html generated:
2017_10_02-PM-07_18_38
Last ObjectModification:
2017_04_02-PM-11_45_40
Theory : reals
Home
Index