Nuprl Lemma : reqmatrix_functionality

[a,b:ℕ]. ∀[X1,X2,Y1,Y2:ℝ(a × b)].  (uiff(X1 ≡ Y1;X2 ≡ Y2)) supposing (Y1 ≡ Y2 and X1 ≡ X2)


Proof




Definitions occuring in Statement :  reqmatrix: X ≡ Y rmatrix: (a × b) nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  reqmatrix: X ≡ Y rmatrix: (a × b) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat: implies:  Q prop: rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf req_witness req_wf real_wf istype-nat req_weakening req_functionality req_transitivity req_inversion
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut independent_pairFormation lambdaFormation_alt universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis hypothesisEquality natural_numberEquality lambdaEquality_alt dependent_functionElimination applyEquality independent_functionElimination functionIsTypeImplies inhabitedIsType functionIsType because_Cache independent_pairEquality isect_memberEquality_alt isectIsTypeImplies independent_isectElimination

Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X1,X2,Y1,Y2:\mBbbR{}(a  \mtimes{}  b)].    (uiff(X1  \mequiv{}  Y1;X2  \mequiv{}  Y2))  supposing  (Y1  \mequiv{}  Y2  and  X1  \mequiv{}  X2)



Date html generated: 2019_10_30-AM-08_14_57
Last ObjectModification: 2019_09_19-AM-11_04_40

Theory : reals


Home Index