Nuprl Lemma : reqmatrix_functionality
∀[a,b:ℕ]. ∀[X1,X2,Y1,Y2:ℝ(a × b)].  (uiff(X1 ≡ Y1;X2 ≡ Y2)) supposing (Y1 ≡ Y2 and X1 ≡ X2)
Proof
Definitions occuring in Statement : 
reqmatrix: X ≡ Y
, 
rmatrix: ℝ(a × b)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
reqmatrix: X ≡ Y
, 
rmatrix: ℝ(a × b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_wf, 
req_witness, 
req_wf, 
real_wf, 
istype-nat, 
req_weakening, 
req_functionality, 
req_transitivity, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_isectElimination
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X1,X2,Y1,Y2:\mBbbR{}(a  \mtimes{}  b)].    (uiff(X1  \mequiv{}  Y1;X2  \mequiv{}  Y2))  supposing  (Y1  \mequiv{}  Y2  and  X1  \mequiv{}  X2)
Date html generated:
2019_10_30-AM-08_14_57
Last ObjectModification:
2019_09_19-AM-11_04_40
Theory : reals
Home
Index