Nuprl Lemma : reqmatrix_inversion
∀[a,b:ℕ]. ∀[X,Y:ℝ(a × b)]. Y ≡ X supposing X ≡ Y
Proof
Definitions occuring in Statement :
reqmatrix: X ≡ Y
,
rmatrix: ℝ(a × b)
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
reqmatrix: X ≡ Y
,
rmatrix: ℝ(a × b)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
nat: ℕ
,
implies: P
⇒ Q
,
prop: ℙ
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
int_seg_wf,
req_witness,
req_wf,
real_wf,
istype-nat,
req_weakening,
req_functionality
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation_alt,
introduction,
cut,
lambdaFormation_alt,
universeIsType,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
productElimination,
hypothesis,
hypothesisEquality,
natural_numberEquality,
lambdaEquality_alt,
dependent_functionElimination,
applyEquality,
independent_functionElimination,
functionIsTypeImplies,
inhabitedIsType,
functionIsType,
isect_memberEquality_alt,
because_Cache,
isectIsTypeImplies,
independent_isectElimination
Latex:
\mforall{}[a,b:\mBbbN{}]. \mforall{}[X,Y:\mBbbR{}(a \mtimes{} b)]. Y \mequiv{} X supposing X \mequiv{} Y
Date html generated:
2019_10_30-AM-08_14_05
Last ObjectModification:
2019_09_19-AM-10_55_47
Theory : reals
Home
Index