Nuprl Lemma : reqmatrix_transitivity
∀[a,b:ℕ]. ∀[X,Y,Z:ℝ(a × b)].  (X ≡ Z) supposing (X ≡ Y and Y ≡ Z)
Proof
Definitions occuring in Statement : 
reqmatrix: X ≡ Y, 
rmatrix: ℝ(a × b), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
reqmatrix: X ≡ Y, 
rmatrix: ℝ(a × b), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_wf, 
req_witness, 
req_wf, 
real_wf, 
istype-nat, 
req_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
independent_isectElimination
Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[X,Y,Z:\mBbbR{}(a  \mtimes{}  b)].    (X  \mequiv{}  Z)  supposing  (X  \mequiv{}  Y  and  Y  \mequiv{}  Z)
 Date html generated: 
2019_10_30-AM-08_14_31
 Last ObjectModification: 
2019_09_19-AM-10_58_40
Theory : reals
Home
Index