Nuprl Lemma : rmin-classical-cases

a,b:ℝ.  (¬¬((rmin(a;b) a) ∨ (rmin(a;b) b)))


Proof




Definitions occuring in Statement :  rmin: rmin(x;y) req: y real: all: x:A. B[x] not: ¬A or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] prop: uimplies: supposing a stable: Stable{P} guard: {T}
Lemmas referenced :  req_wf rmin_wf istype-void real_wf stable__false false_wf rless_wf not_wf not-rless minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rmin-req2 rleq_weakening_rless rmin-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination sqequalRule functionIsType unionIsType universeIsType introduction extract_by_obid isectElimination hypothesisEquality inhabitedIsType unionEquality functionEquality independent_isectElimination unionElimination inlFormation_alt inrFormation_alt

Latex:
\mforall{}a,b:\mBbbR{}.    (\mneg{}\mneg{}((rmin(a;b)  =  a)  \mvee{}  (rmin(a;b)  =  b)))



Date html generated: 2019_10_29-AM-09_38_40
Last ObjectModification: 2019_07_29-PM-03_11_24

Theory : reals


Home Index