Nuprl Lemma : rmin-classical-cases
∀a,b:ℝ.  (¬¬((rmin(a;b) = a) ∨ (rmin(a;b) = b)))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
req: x = y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
guard: {T}
Lemmas referenced : 
req_wf, 
rmin_wf, 
istype-void, 
real_wf, 
stable__false, 
false_wf, 
rless_wf, 
not_wf, 
not-rless, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rmin-req2, 
rleq_weakening_rless, 
rmin-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
functionIsType, 
unionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
inhabitedIsType, 
unionEquality, 
functionEquality, 
independent_isectElimination, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}a,b:\mBbbR{}.    (\mneg{}\mneg{}((rmin(a;b)  =  a)  \mvee{}  (rmin(a;b)  =  b)))
Date html generated:
2019_10_29-AM-09_38_40
Last ObjectModification:
2019_07_29-PM-03_11_24
Theory : reals
Home
Index