Nuprl Lemma : rmin-com
∀[x,y:ℝ].  (rmin(x;y) = rmin(y;x))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y), 
req: x = y, 
real: ℝ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
real: ℝ, 
squash: ↓T, 
rmin: rmin(x;y), 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
req_weakening, 
rmin_wf, 
equal_wf, 
squash_wf, 
true_wf, 
imin_com, 
imin_wf, 
iff_weakening_equal, 
nat_plus_wf, 
regular-int-seq_wf, 
req_witness, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    (rmin(x;y)  =  rmin(y;x))
Date html generated:
2017_10_03-AM-08_22_24
Last ObjectModification:
2017_07_28-AM-07_22_18
Theory : reals
Home
Index