Nuprl Lemma : rminus-reverses-rleq

[x,y:ℝ].  -(y) ≤ -(x) supposing x ≤ y


Proof




Definitions occuring in Statement :  rleq: x ≤ y rminus: -(x) real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  rleq: x ≤ y uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: rsub: y iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  less_than'_wf rsub_wf rminus_wf real_wf nat_plus_wf rnonneg_wf rnonneg_functionality radd_wf radd_comm radd_functionality rminus-rminus req_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination independent_functionElimination promote_hyp addLevel

Latex:
\mforall{}[x,y:\mBbbR{}].    -(y)  \mleq{}  -(x)  supposing  x  \mleq{}  y



Date html generated: 2016_05_18-AM-07_07_24
Last ObjectModification: 2015_12_28-AM-00_38_51

Theory : reals


Home Index