Nuprl Lemma : rminus-reverses-rless

x,y:ℝ.  ((x < y)  (-(y) < -(x)))


Proof




Definitions occuring in Statement :  rless: x < y rminus: -(x) real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) and: P ∧ Q prop:
Lemmas referenced :  rless-implies-rless rminus_wf real_term_polynomial itermSubtract_wf itermVar_wf itermMinus_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rsub_wf rless_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_isectElimination natural_numberEquality sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (-(y)  <  -(x)))



Date html generated: 2017_10_03-AM-08_26_32
Last ObjectModification: 2017_07_28-AM-07_24_23

Theory : reals


Home Index