Nuprl Lemma : rroot-exists1

i:{2...}. ∀x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} .
  ∃q:{q:ℕ ⟶ ℝ
      (∀n,m:ℕ.  (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
      ∧ ((↑isEven(i))  (∀m:ℕ(r0 ≤ (q m))))} 
   lim n→∞.q n^i x


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} nat: assert: b all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q cand: c∧ B or: P ∨ Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q int_upper: {i...} subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  rroot-exists-part1 all_wf nat_wf or_wf rleq_wf int-to-real_wf assert_wf isEven_wf converges-to_wf rnexp_wf int_upper_subtype_nat false_wf le_wf real_wf int_upper_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination dependent_pairFormation sqequalRule independent_pairFormation dependent_set_memberEquality productEquality isectElimination lambdaEquality because_Cache natural_numberEquality applyEquality functionEquality setElimination rename setEquality

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .
    \mexists{}q:\{q:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}| 
            (\mforall{}n,m:\mBbbN{}.    (((r0  \mleq{}  (q  n))  \mwedge{}  (r0  \mleq{}  (q  m)))  \mvee{}  (((q  n)  \mleq{}  r0)  \mwedge{}  ((q  m)  \mleq{}  r0))))
            \mwedge{}  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (r0  \mleq{}  (q  m))))\} 
      lim  n\mrightarrow{}\minfty{}.q  n\^{}i  =  x



Date html generated: 2016_05_18-AM-09_33_08
Last ObjectModification: 2015_12_27-PM-11_18_47

Theory : reals


Home Index