Nuprl Lemma : rsub_functionality_wrt_rless
∀x,y,z,t:ℝ.  ((x < z) 
⇒ (x - y) < (z - t) supposing t ≤ y)
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
rsub: x - y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
rsub: x - y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
radd-preserves-rless, 
rminus_wf, 
rless_functionality, 
radd_wf, 
radd_comm, 
rless_transitivity1, 
rleq_wf, 
rless_wf, 
radd-preserves-rleq, 
rminus-reverses-rleq, 
rleq_functionality
Rules used in proof : 
comment, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}x,y,z,t:\mBbbR{}.    ((x  <  z)  {}\mRightarrow{}  (x  -  y)  <  (z  -  t)  supposing  t  \mleq{}  y)
Date html generated:
2016_05_18-AM-07_09_47
Last ObjectModification:
2015_12_28-AM-00_38_55
Theory : reals
Home
Index