Nuprl Lemma : rsub_functionality_wrt_rless

x,y,z,t:ℝ.  ((x < z)  (x y) < (z t) supposing t ≤ y)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rsub: y real: uimplies: supposing a all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A false: False uall: [x:A]. B[x] subtype_rel: A ⊆B real: prop: rsub: y iff: ⇐⇒ Q rev_implies:  Q guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  less_than'_wf rsub_wf real_wf nat_plus_wf radd-preserves-rless rminus_wf rless_functionality radd_wf radd_comm rless_transitivity1 rleq_wf rless_wf radd-preserves-rleq rminus-reverses-rleq rleq_functionality
Rules used in proof :  comment sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality voidElimination lemma_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination independent_isectElimination because_Cache

Latex:
\mforall{}x,y,z,t:\mBbbR{}.    ((x  <  z)  {}\mRightarrow{}  (x  -  y)  <  (z  -  t)  supposing  t  \mleq{}  y)



Date html generated: 2016_05_18-AM-07_09_47
Last ObjectModification: 2015_12_28-AM-00_38_55

Theory : reals


Home Index