Nuprl Lemma : rsum-rewrite-test

Σ{r(i) 1≤i≤10} ≤ Σ{r(1 i) 1≤i≤10}


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y int-to-real: r(n) add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: so_lambda: λ2x.t[x] int_seg: {i..j-} so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T}
Lemmas referenced :  rsum_functionality_wrt_rleq2 rleq_functionality_wrt_implies rleq_weakening_equal le_wf int_seg_wf int-to-real_wf rsum_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermConstant_wf itermAdd_wf itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le rleq-int
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality addEquality natural_numberEquality productElimination independent_functionElimination because_Cache hypothesis unionElimination isectElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll setElimination rename

Latex:
\mSigma{}\{r(i)  |  1\mleq{}i\mleq{}10\}  \mleq{}  \mSigma{}\{r(1  +  i)  |  1\mleq{}i\mleq{}10\}



Date html generated: 2016_05_18-AM-07_45_28
Last ObjectModification: 2016_01_17-AM-02_06_42

Theory : reals


Home Index