Nuprl Lemma : rv-congruent_functionality
∀n:ℕ. ∀a1,a2,b1,b2,c1,c2,d1,d2:ℝ^n.
  (req-vec(n;a1;a2) ⇒ req-vec(n;b1;b2) ⇒ req-vec(n;c1;c2) ⇒ req-vec(n;d1;d2) ⇒ (a1b1=c1d1 ⇐⇒ a2b2=c2d2))
Proof
Definitions occuring in Statement : 
rv-congruent: ab=cd, 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rv-congruent: ab=cd, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
uiff: uiff(P;Q)
Lemmas referenced : 
rv-congruent_wf, 
req-vec_wf, 
real-vec_wf, 
nat_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_functionality, 
real-vec-dist_functionality, 
req-vec_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2,c1,c2,d1,d2:\mBbbR{}\^{}n.
    (req-vec(n;a1;a2)
    {}\mRightarrow{}  req-vec(n;b1;b2)
    {}\mRightarrow{}  req-vec(n;c1;c2)
    {}\mRightarrow{}  req-vec(n;d1;d2)
    {}\mRightarrow{}  (a1b1=c1d1  \mLeftarrow{}{}\mRightarrow{}  a2b2=c2d2))
 Date html generated: 
2016_10_26-AM-10_28_49
 Last ObjectModification: 
2016_09_25-PM-01_06_53
Theory : reals
Home
Index