Nuprl Lemma : series-sum-linear2
∀x:ℕ ⟶ ℝ. ∀a,c:ℝ.  (Σn.x[n] = a 
⇒ Σn.c * x[n] = c * a)
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
rmul: a * b
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
series-sum: Σn.x[n] = a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmul-limit, 
nat_wf, 
rsum_wf, 
int_seg_wf, 
converges-to_wf, 
int_seg_subtype_nat, 
false_wf, 
real_wf, 
req_weakening, 
rmul_wf, 
constant-limit, 
converges-to_functionality, 
req_functionality, 
req_inversion, 
rsum_linearity2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
addEquality, 
independent_functionElimination, 
independent_isectElimination, 
independent_pairFormation, 
functionEquality, 
productElimination
Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,c:\mBbbR{}.    (\mSigma{}n.x[n]  =  a  {}\mRightarrow{}  \mSigma{}n.c  *  x[n]  =  c  *  a)
Date html generated:
2016_05_18-AM-07_57_04
Last ObjectModification:
2015_12_28-AM-01_08_42
Theory : reals
Home
Index