Nuprl Lemma : strict-upper-bound_functionality
∀A:Set(ℝ). ∀b,c:ℝ. {A < b
⇒ A < c} supposing b ≤ c
Proof
Definitions occuring in Statement :
strict-upper-bound: A < b
,
rset: Set(ℝ)
,
rleq: x ≤ y
,
real: ℝ
,
uimplies: b supposing a
,
guard: {T}
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Definitions unfolded in proof :
strict-upper-bound: A < b
,
guard: {T}
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
le: A ≤ B
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
real: ℝ
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
rge: x ≥ y
Lemmas referenced :
less_than'_wf,
rsub_wf,
real_wf,
nat_plus_wf,
rset-member_wf,
all_wf,
rless_wf,
rleq_wf,
rset_wf,
rless_functionality_wrt_implies,
rleq_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
isect_memberFormation,
cut,
introduction,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
productElimination,
independent_pairEquality,
voidElimination,
lemma_by_obid,
isectElimination,
applyEquality,
hypothesis,
setElimination,
rename,
minusEquality,
natural_numberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
because_Cache,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}A:Set(\mBbbR{}). \mforall{}b,c:\mBbbR{}. \{A < b {}\mRightarrow{} A < c\} supposing b \mleq{} c
Date html generated:
2016_05_18-AM-08_09_17
Last ObjectModification:
2015_12_28-AM-01_15_41
Theory : reals
Home
Index