Nuprl Lemma : strict-upper-bound_functionality
∀A:Set(ℝ). ∀b,c:ℝ.  {A < b 
⇒ A < c} supposing b ≤ c
Proof
Definitions occuring in Statement : 
strict-upper-bound: A < b
, 
rset: Set(ℝ)
, 
rleq: x ≤ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
strict-upper-bound: A < b
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
rge: x ≥ y
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
rset-member_wf, 
all_wf, 
rless_wf, 
rleq_wf, 
rset_wf, 
rless_functionality_wrt_implies, 
rleq_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}A:Set(\mBbbR{}).  \mforall{}b,c:\mBbbR{}.    \{A  <  b  {}\mRightarrow{}  A  <  c\}  supposing  b  \mleq{}  c
Date html generated:
2016_05_18-AM-08_09_17
Last ObjectModification:
2015_12_28-AM-01_15_41
Theory : reals
Home
Index