Nuprl Lemma : union-of-intervals-not-interval
¬(∀t:{t:ℝ| t ∈ [r(-1), r1]} . ((↓t ∈ [r(-1), r0]) ∨ (↓t ∈ [r0, r1])))
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-member: r ∈ I
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
uimplies: b supposing a
, 
top: Top
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
Lemmas referenced : 
not-all-nonneg-or-nonpos, 
real_wf, 
i-member_wf, 
rccint_wf, 
int-to-real_wf, 
squash_wf, 
rless-cases, 
rless-int, 
rleq_weakening_rless, 
rleq_wf, 
member_rccint_lemma, 
istype-void, 
sq_stable__rleq
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
universeIsType, 
hypothesis, 
voidElimination, 
sqequalRule, 
functionIsType, 
setIsType, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
hypothesisEquality, 
unionIsType, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
inrFormation_alt, 
independent_isectElimination, 
inlFormation_alt, 
isect_memberEquality_alt, 
dependent_set_memberEquality_alt, 
productIsType, 
imageElimination
Latex:
\mneg{}(\mforall{}t:\{t:\mBbbR{}|  t  \mmember{}  [r(-1),  r1]\}  .  ((\mdownarrow{}t  \mmember{}  [r(-1),  r0])  \mvee{}  (\mdownarrow{}t  \mmember{}  [r0,  r1])))
Date html generated:
2019_10_30-AM-07_20_07
Last ObjectModification:
2019_05_08-PM-11_33_09
Theory : reals
Home
Index