Nuprl Lemma : unit-prod_wf
∀[X:Type]. ∀[d:metric(X)].  (I x (X;d) ∈ MetricSpace)
Proof
Definitions occuring in Statement : 
unit-prod: I x (X;d), 
metric-space: MetricSpace, 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
unit-prod: I x (X;d), 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
metric-space: MetricSpace
Lemmas referenced : 
prod-metric-space_wf, 
istype-void, 
istype-le, 
ifthenelse_wf, 
eq_int_wf, 
metric-space_wf, 
unit-interval-ms_wf, 
metric_wf, 
int_seg_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation_alt, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
lambdaEquality_alt, 
instantiate, 
setElimination, 
rename, 
productElimination, 
dependent_pairEquality_alt, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (I  x  (X;d)  \mmember{}  MetricSpace)
 Date html generated: 
2019_10_29-AM-11_14_16
 Last ObjectModification: 
2019_10_02-AM-09_54_29
Theory : reals
Home
Index