Nuprl Lemma : arcsin-is-arcsine
∀[x:{x:ℝ| x ∈ (r(-1), r1)} ]. (arcsin(x) = arcsine(x))
Proof
Definitions occuring in Statement :
arcsin: arcsin(a)
,
arcsine: arcsine(x)
,
rooint: (l, u)
,
i-member: r ∈ I
,
req: x = y
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
set: {x:A| B[x]}
,
minus: -n
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
cand: A c∧ B
,
guard: {T}
,
uimplies: b supposing a
,
prop: ℙ
,
implies: P
⇒ Q
Lemmas referenced :
arcsin-unique,
member_rooint_lemma,
istype-void,
member_rccint_lemma,
rleq_weakening_rless,
int-to-real_wf,
rleq_wf,
arcsine-bounds,
arcsine_wf,
rminus_wf,
halfpi_wf,
rsin-arcsine,
real_wf,
i-member_wf,
rooint_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
dependent_set_memberEquality_alt,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
hypothesis,
hypothesisEquality,
productElimination,
minusEquality,
natural_numberEquality,
independent_isectElimination,
independent_pairFormation,
sqequalRule,
productIsType,
universeIsType,
independent_functionElimination,
setIsType
Latex:
\mforall{}[x:\{x:\mBbbR{}| x \mmember{} (r(-1), r1)\} ]. (arcsin(x) = arcsine(x))
Date html generated:
2019_10_31-AM-06_15_37
Last ObjectModification:
2019_05_24-PM-04_55_25
Theory : reals_2
Home
Index