Nuprl Lemma : rsin-arcsine
∀[x:{x:ℝ| x ∈ (r(-1), r1)} ]. (rsin(arcsine(x)) = x)
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x)
, 
rsin: rsin(x)
, 
rooint: (l, u)
, 
i-member: r ∈ I
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
i-member: r ∈ I
, 
rooint: (l, u)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subinterval: I ⊆ J 
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
rge: x ≥ y
, 
guard: {T}
, 
rfun: I ⟶ℝ
, 
subtype_rel: A ⊆r B
, 
rccint: [l, u]
, 
ifun: ifun(f;I)
, 
real-fun: real-fun(f;a;b)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
or: P ∨ Q
, 
arcsine: arcsine(x)
, 
not: ¬A
, 
rsub: x - y
, 
arcsine_deriv: arcsine_deriv(x)
, 
rneq: x ≠ y
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
nat_plus: ℕ+
, 
label: ...$L... t
, 
i-finite: i-finite(I)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
rmin-rmax-subinterval, 
rooint_wf, 
int-to-real_wf, 
rsin_wf, 
arcsine_wf, 
i-member_wf, 
rsin-strict-bound, 
member_rooint_lemma, 
rless-arcsine, 
arcsine-rless, 
rless_wf, 
rminus_wf, 
halfpi_wf, 
rless-int, 
req_witness, 
set_wf, 
real_wf, 
member_rccint_lemma, 
rleq_wf, 
rmin_wf, 
rmax_wf, 
rmin_strict_ub, 
sq_stable__rless, 
rleq_weakening_equal, 
rmin-rleq-rmax, 
rmax_strict_lb, 
rless_functionality_wrt_implies, 
integral-additive, 
arcsine_deriv_wf, 
subtype_rel_sets, 
rccint_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_functionality, 
arcsine_deriv_functionality, 
req_weakening, 
req_wf, 
ifun_wf, 
rccint-icompact, 
rmin_lb, 
rleq-rmax, 
integral-reverse, 
rmin-rleq, 
integral_wf, 
equal_wf, 
radd_wf, 
radd_functionality, 
arcsine-rsin, 
rmul_wf, 
uiff_transitivity, 
req_transitivity, 
rminus-as-rmul, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
rless_transitivity1, 
rless_transitivity2, 
radd-preserves-rless, 
rsub_wf, 
Riemann-integral-lower-bound, 
rleq_weakening_rless, 
Riemann-integral_wf, 
rless_functionality, 
radd-zero-both, 
radd-rminus-assoc, 
radd_comm, 
rminus_functionality, 
rmul-one-both, 
rmul-distrib, 
rmul_over_rminus, 
arcsine-root-bounds, 
rmul_preserves_rleq, 
rdiv_wf, 
rsqrt_wf, 
rsqrt-positive, 
rleq_functionality, 
rmul-rdiv-cancel2, 
rnexp_wf, 
false_wf, 
le_wf, 
radd-preserves-rleq, 
square-nonneg, 
rsqrt-rnexp-2, 
rnexp2, 
rmul-int, 
radd-assoc, 
radd-ac, 
radd-rminus-both, 
rnexp-rleq-iff, 
rsqrt_nonneg, 
rleq-int, 
less_than_wf, 
rleq_weakening, 
rless_irreflexivity, 
req-iff-not-rneq, 
rneq_wf, 
rmin-req2, 
rmax-req, 
rleq_transitivity, 
integral-is-Riemann, 
left-endpoint_wf, 
right-endpoint_wf, 
rminus-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
because_Cache, 
productEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
lambdaFormation, 
imageElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setEquality, 
inlFormation, 
functionEquality, 
addLevel, 
impliesFunctionality, 
addEquality, 
levelHypothesis, 
inrFormation, 
multiplyEquality, 
unionElimination
Latex:
\mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  (r(-1),  r1)\}  ].  (rsin(arcsine(x))  =  x)
Date html generated:
2017_10_04-PM-10_48_17
Last ObjectModification:
2017_07_28-AM-08_51_28
Theory : reals_2
Home
Index