Nuprl Lemma : arcsine_deriv_wf
∀[x:{x:ℝ| x ∈ (r(-1), r1)} ]. (arcsine_deriv(x) ∈ ℝ)
Proof
Definitions occuring in Statement : 
arcsine_deriv: arcsine_deriv(x), 
rooint: (l, u), 
i-member: r ∈ I, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
i-member: r ∈ I, 
rooint: (l, u), 
and: P ∧ Q, 
top: Top, 
sq_stable: SqStable(P), 
squash: ↓T, 
arcsine_deriv: arcsine_deriv(x), 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
rneq: x ≠ y, 
or: P ∨ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
arcsine-root-bounds, 
member_rooint_lemma, 
sq_stable__rless, 
int-to-real_wf, 
rdiv_wf, 
rsqrt_wf, 
rleq_weakening_rless, 
rsub_wf, 
rmul_wf, 
rleq_wf, 
rsqrt-positive, 
rless_wf, 
set_wf, 
real_wf, 
i-member_wf, 
rooint_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality, 
applyEquality, 
inrFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  (r(-1),  r1)\}  ].  (arcsine\_deriv(x)  \mmember{}  \mBbbR{})
Date html generated:
2016_10_26-PM-00_41_06
Last ObjectModification:
2016_09_12-PM-05_45_23
Theory : reals_2
Home
Index