Nuprl Lemma : arcsine-root-bounds
∀t:ℝ. ((t ∈ (r(-1), r1)) 
⇒ (r0 < (r1 - t * t)))
Proof
Definitions occuring in Statement : 
rooint: (l, u)
, 
i-member: r ∈ I
, 
rless: x < y
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
rsub: x - y
Lemmas referenced : 
radd-preserves-rless, 
int-to-real_wf, 
rsub_wf, 
rmul_wf, 
i-member_wf, 
rooint_wf, 
real_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
square-rless-1-iff, 
member_rooint_lemma, 
rabs-rless-iff, 
rless_wf, 
squash_wf, 
true_wf, 
rminus-int, 
iff_weakening_equal, 
radd_wf, 
rminus_wf, 
rless_functionality, 
req_weakening, 
radd-zero-both, 
radd_functionality, 
radd-rminus-both, 
radd_comm, 
radd-ac, 
req_inversion, 
rnexp2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
minusEquality, 
because_Cache, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
addLevel, 
levelHypothesis
Latex:
\mforall{}t:\mBbbR{}.  ((t  \mmember{}  (r(-1),  r1))  {}\mRightarrow{}  (r0  <  (r1  -  t  *  t)))
Date html generated:
2016_10_26-PM-00_40_58
Last ObjectModification:
2016_09_12-PM-05_45_15
Theory : reals_2
Home
Index