Nuprl Lemma : rsqrt-positive

x:{x:ℝr0 < x} (r0 < rsqrt(x))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rless: x < y int-to-real: r(n) real: all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q squash: T so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q rless: x < y sq_exists: x:{A| B[x]} false: False nat_plus: + less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top
Lemmas referenced :  sq_stable__rless int-to-real_wf rsqrt_wf rleq_weakening_rless rleq_wf set_wf real_wf rless_wf rmul_wf rless_functionality req_weakening rsqrt_squared rmul-is-positive rsqrt_nonneg rless_transitivity2 rless_transitivity1 nat_plus_properties satisfiable-full-omega-tt intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation setElimination thin rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination isectElimination natural_numberEquality hypothesis hypothesisEquality independent_isectElimination dependent_set_memberEquality applyEquality because_Cache sqequalRule independent_functionElimination imageMemberEquality baseClosed imageElimination lambdaEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}x:\{x:\mBbbR{}|  r0  <  x\}  .  (r0  <  rsqrt(x))



Date html generated: 2016_10_26-AM-10_09_33
Last ObjectModification: 2016_09_06-AM-11_54_07

Theory : reals


Home Index