Nuprl Lemma : arcsine-rsin
∀[x:{x:ℝ| x ∈ (-(π/2), π/2)} ]. (arcsine(rsin(x)) = x)
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x), 
halfpi: π/2, 
rsin: rsin(x), 
rooint: (l, u), 
i-member: r ∈ I, 
req: x = y, 
rminus: -(x), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
rdiv: (x/y), 
rneq: x ≠ y, 
le: A ≤ B, 
nat: ℕ, 
not: ¬A, 
false: False, 
req_int_terms: t1 ≡ t2, 
arcsine_deriv: arcsine_deriv(x), 
r-ap: f(x), 
rfun-eq: rfun-eq(I;f;g), 
increasing-on-interval: f[x] increasing for x ∈ I, 
real-fun: real-fun(f;a;b), 
ifun: ifun(f;I), 
btrue: tt, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
isl: isl(x), 
i-finite: i-finite(I), 
or: P ∨ Q, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
pi2: snd(t), 
pi1: fst(t), 
outl: outl(x), 
rooint: (l, u), 
endpoints: endpoints(I), 
left-endpoint: left-endpoint(I), 
right-endpoint: right-endpoint(I), 
iproper: iproper(I), 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
guard: {T}, 
cand: A c∧ B, 
and: P ∧ Q, 
so_apply: x[s], 
prop: ℙ, 
rfun: I ⟶ℝ, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
rsin0, 
arcsine_functionality, 
arcsine0, 
halfpi-positive, 
radd-zero, 
radd-rminus, 
rless_functionality, 
radd-preserves-rless, 
rcos-positive, 
rsqrt-of-square, 
rsqrt_functionality, 
square-nonneg, 
iff_weakening_equal, 
subtype_rel_self, 
true_wf, 
squash_wf, 
rmul-rinv, 
rmul_functionality, 
req_transitivity, 
rmul-identity1, 
rmul-one, 
rinv_wf2, 
rdiv_wf, 
rmul_preserves_req, 
equal_wf, 
rsqrt_wf, 
rsqrt-positive, 
arcsine-root-bounds, 
rnexp2, 
req_inversion, 
radd_functionality, 
le_wf, 
false_wf, 
rnexp_wf, 
rsin-rcos-pythag, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
req-iff-rsub-is-0, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermSubtract_wf, 
radd_comm, 
radd_wf, 
rsub_wf, 
radd-preserves-req, 
derivative_functionality, 
rmul_wf, 
rleq_weakening_rless, 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
member_rccint_lemma, 
derivative-rsin, 
subinterval-riiint, 
riiint_wf, 
derivative_functionality_wrt_subinterval, 
rcos-nonneg, 
rccint_wf, 
derivative-implies-increasing-simple, 
all_wf, 
rleq_wf, 
monotone-maps-compact, 
i-finite_wf, 
rless-int, 
derivative-arcsine, 
arcsine_deriv_functionality, 
req_wf, 
req_weakening, 
rcos_functionality, 
req_functionality, 
arcsine_deriv_wf, 
rcos_wf, 
chain-rule, 
set_wf, 
req_witness, 
derivative-id, 
rless_wf, 
rsin_wf, 
arcsine_wf, 
i-member_wf, 
real_wf, 
int-to-real_wf, 
halfpi-interval-proper, 
halfpi_wf, 
rminus_wf, 
rooint_wf, 
antiderivatives-equal, 
member_rooint_lemma, 
rsin-strict-bound
Rules used in proof : 
dependent_pairFormation, 
universeEquality, 
instantiate, 
imageElimination, 
applyEquality, 
inrFormation, 
equalitySymmetry, 
equalityTransitivity, 
intEquality, 
int_eqEquality, 
approximateComputation, 
functionEquality, 
inlFormation, 
baseClosed, 
imageMemberEquality, 
independent_isectElimination, 
lambdaFormation, 
productElimination, 
isect_memberFormation, 
because_Cache, 
minusEquality, 
productEquality, 
rename, 
setElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
hypothesisEquality, 
setEquality, 
natural_numberEquality, 
lambdaEquality, 
independent_functionElimination, 
isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalReflexivity, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  (-(\mpi{}/2),  \mpi{}/2)\}  ].  (arcsine(rsin(x))  =  x)
Date html generated:
2018_05_22-PM-03_07_52
Last ObjectModification:
2018_05_20-PM-11_35_49
Theory : reals_2
Home
Index