Nuprl Lemma : arcsine_functionality
∀[x:{x:ℝ| x ∈ (r(-1), r1)} ]. ∀[y:ℝ].  arcsine(x) = arcsine(y) supposing x = y
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x), 
rooint: (l, u), 
i-member: r ∈ I, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
arcsine: arcsine(x), 
prop: ℙ, 
and: P ∧ Q, 
cand: A c∧ B, 
guard: {T}, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
rooint: (l, u), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
subtype_rel: A ⊆r B, 
subinterval: I ⊆ J , 
rccint: [l, u], 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b)
Lemmas referenced : 
member_rooint_lemma, 
req_witness, 
arcsine_wf, 
i-member_wf, 
rooint_wf, 
int-to-real_wf, 
rless_transitivity1, 
rleq_weakening, 
req_inversion, 
rless_transitivity2, 
rless_wf, 
req_wf, 
real_wf, 
set_wf, 
arcsine_deriv_wf, 
rmin-rmax-subinterval, 
rless-int, 
subtype_rel_sets, 
rccint_wf, 
rmin_wf, 
rmax_wf, 
member_rccint_lemma, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
arcsine_deriv_functionality, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
req_weakening, 
integral_functionality_endpoints
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalHypSubstitution, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
dependent_set_memberEquality, 
hypothesisEquality, 
minusEquality, 
natural_numberEquality, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
independent_pairFormation, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
setEquality, 
lambdaFormation
Latex:
\mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  (r(-1),  r1)\}  ].  \mforall{}[y:\mBbbR{}].    arcsine(x)  =  arcsine(y)  supposing  x  =  y
Date html generated:
2016_10_26-PM-00_41_31
Last ObjectModification:
2016_09_12-PM-05_45_43
Theory : reals_2
Home
Index