Nuprl Lemma : rsin-rcos-pythag
∀x:ℝ. ((rsin(x)^2 + rcos(x)^2) = r1)
Proof
Definitions occuring in Statement : 
rcos: rcos(x), 
rsin: rsin(x), 
rnexp: x^k1, 
req: x = y, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
radd_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rsin_wf, 
rcos_wf, 
sine_wf, 
cosine_wf, 
int-to-real_wf, 
sine-cosine-pythag, 
req_functionality, 
radd_functionality, 
rnexp_functionality, 
rcos-is-cosine, 
rsin-is-sine, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}x:\mBbbR{}.  ((rsin(x)\^{}2  +  rcos(x)\^{}2)  =  r1)
Date html generated:
2016_10_26-PM-00_14_47
Last ObjectModification:
2016_09_12-PM-05_40_34
Theory : reals_2
Home
Index