Nuprl Lemma : derivative-arcsine
d(arcsine(x))/dx = λx.arcsine_deriv(x) on (r(-1), r1)
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x), 
arcsine_deriv: arcsine_deriv(x), 
derivative: d(f[x])/dx = λz.g[z] on I, 
rooint: (l, u), 
int-to-real: r(n), 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
arcsine: arcsine(x), 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
top: Top, 
and: P ∧ Q, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rfun: I ⟶ℝ, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
derivative-of-integral, 
rooint_wf, 
int-to-real_wf, 
member_rooint_lemma, 
rless-int, 
rless_wf, 
arcsine_deriv_wf, 
i-member_wf, 
real_wf, 
req_wf, 
set_wf, 
all_wf, 
req_weakening, 
req_functionality, 
arcsine_deriv_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
dependent_set_memberEquality, 
productEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
because_Cache, 
functionEquality, 
applyEquality, 
independent_isectElimination
Latex:
d(arcsine(x))/dx  =  \mlambda{}x.arcsine\_deriv(x)  on  (r(-1),  r1)
Date html generated:
2016_10_26-PM-00_41_25
Last ObjectModification:
2016_09_12-PM-05_45_38
Theory : reals_2
Home
Index