Nuprl Lemma : rsqrt-rnexp-2

[x:{x:ℝr0 ≤ x} ]. (rsqrt(x)^2 x)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b true: True subtract: m eq_int: (i =z j) nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rnexp_wf false_wf le_wf rsqrt_wf rleq_wf int-to-real_wf real_wf req_wf rmul_wf set_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base subtract_wf satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf req_functionality rnexp_unroll req_weakening rmul_functionality rsqrt_squared
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality setElimination rename applyEquality lambdaEquality setEquality productEquality because_Cache independent_functionElimination unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity voidElimination intEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  (rsqrt(x)\^{}2  =  x)



Date html generated: 2017_10_03-AM-10_42_46
Last ObjectModification: 2017_07_28-AM-08_18_00

Theory : reals


Home Index