Nuprl Lemma : Riemann-integral-lower-bound
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:{f:[a, b] ⟶ℝ| ifun(f;[a, b])} ].
  ∀c:ℝ. (c * (b - a)) ≤ ∫ f[x] dx on [a, b] supposing ∀x:ℝ. ((x ∈ [a, b]) ⇒ (c ≤ f[x]))
Proof
Definitions occuring in Statement : 
Riemann-integral: ∫ f[x] dx on [a, b], 
ifun: ifun(f;I), 
rfun: I ⟶ℝ, 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
rsub: x - y, 
rmul: a * b, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
prop: ℙ, 
squash: ↓T, 
label: ...$L... t, 
iff: P ⇐⇒ Q, 
sq_stable: SqStable(P), 
subtype_rel: A ⊆r B, 
guard: {T}, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
top: Top, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
i-member_wf, 
rccint_wf, 
real_wf, 
ifun_wf, 
squash_wf, 
icompact_wf, 
rfun_wf, 
interval_wf, 
eta_conv, 
rccint-icompact, 
sq_stable__rleq, 
iff_weakening_equal, 
Riemann-integral_wf, 
rmul_wf, 
nat_plus_wf, 
all_wf, 
rleq_wf, 
set_wf, 
top_wf, 
member_rccint_lemma, 
subtype_rel_dep_function, 
subtype_rel_self, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_weakening, 
req_wf, 
Riemann-integral-rleq, 
rleq_functionality, 
req_inversion, 
Riemann-integral-const
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
setEquality, 
imageElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:\{f:[a,  b]  {}\mrightarrow{}\mBbbR{}|  ifun(f;[a,  b])\}  ].
    \mforall{}c:\mBbbR{}.  (c  *  (b  -  a))  \mleq{}  \mint{}  f[x]  dx  on  [a,  b]  supposing  \mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  (c  \mleq{}  f[x]))
Date html generated:
2016_10_26-PM-00_03_03
Last ObjectModification:
2016_09_12-PM-05_38_10
Theory : reals_2
Home
Index