Nuprl Lemma : arcsine-bounds
∀x:{x:ℝ| x ∈ (r(-1), r1)} . (arcsine(x) ∈ (-(π/2), π/2))
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x), 
halfpi: π/2, 
rooint: (l, u), 
i-member: r ∈ I, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rfun: I ⟶ℝ, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
iproper: iproper(I), 
right-endpoint: right-endpoint(I), 
left-endpoint: left-endpoint(I), 
i-finite: i-finite(I), 
rooint: (l, u), 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
endpoints: endpoints(I), 
outl: outl(x), 
pi1: fst(t), 
pi2: snd(t), 
and: P ∧ Q, 
cand: A c∧ B, 
true: True, 
so_apply: x[s], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
r-ap: f(x), 
top: Top, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x]
Lemmas referenced : 
real_wf, 
i-member_wf, 
rooint_wf, 
int-to-real_wf, 
IVT-strictly-increasing-open, 
rminus_wf, 
halfpi_wf, 
rsin_wf, 
rccint_wf, 
req_wf, 
halfpi-interval-proper, 
rless_wf, 
req_weakening, 
req_functionality, 
rsin_functionality, 
rsin-strictly-increasing, 
member_rooint_lemma, 
istype-void, 
sq_stable__rless, 
squash_wf, 
true_wf, 
rminus-int, 
subtype_rel_self, 
iff_weakening_equal, 
rless_functionality, 
rminus_functionality, 
rsin-halfpi, 
rsin-rminus, 
req_inversion, 
rsin-strict-bound, 
arcsine_wf, 
rless_transitivity1, 
rleq_weakening, 
rless_transitivity2, 
arcsine_functionality, 
arcsine-rsin
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
setIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
minusEquality, 
natural_numberEquality, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
productElimination, 
isect_memberEquality_alt, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_pairFormation_alt, 
productIsType
Latex:
\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  (r(-1),  r1)\}  .  (arcsine(x)  \mmember{}  (-(\mpi{}/2),  \mpi{}/2))
Date html generated:
2019_10_31-AM-06_12_14
Last ObjectModification:
2019_04_03-AM-01_15_21
Theory : reals_2
Home
Index