Nuprl Lemma : deriviative-rsin
d(rsin(x))/dx = λx.rcos(x) on (-∞, ∞)
Proof
Definitions occuring in Statement : 
rcos: rcos(x), 
rsin: rsin(x), 
derivative: d(f[x])/dx = λz.g[z] on I, 
riiint: (-∞, ∞)
Definitions unfolded in proof : 
member: t ∈ T, 
rfun: I ⟶ℝ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
rfun-eq: rfun-eq(I;f;g), 
all: ∀x:A. B[x], 
r-ap: f(x), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
derivative-sine, 
riiint_wf, 
sine_wf, 
real_wf, 
i-member_wf, 
rsin_wf, 
cosine_wf, 
rcos_wf, 
req_weakening, 
set_wf, 
derivative_functionality, 
req_functionality, 
rsin-is-sine, 
rcos-is-cosine
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
lambdaEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
setEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
productElimination
Latex:
d(rsin(x))/dx  =  \mlambda{}x.rcos(x)  on  (-\minfty{},  \minfty{})
Date html generated:
2016_10_26-PM-00_14_41
Last ObjectModification:
2016_09_12-PM-05_40_29
Theory : reals_2
Home
Index