Nuprl Lemma : rstar-rless
∀[x,y:ℝ].  ((x)* < (y)* ⇐⇒ x < y)
Proof
Definitions occuring in Statement : 
rstar: (x)*, 
rless*: x < y, 
rless: x < y, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
rless*: x < y, 
rrel*: R*(x,y), 
exists: ∃x:A. B[x], 
rstar: (x)*, 
all: ∀x:A. B[x], 
int_upper: {i...}, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
rless*_wf, 
rstar_wf, 
rless_wf, 
real_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
false_wf, 
int_upper_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
dependent_functionElimination, 
dependent_set_memberEquality, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    ((x)*  <  (y)*  \mLeftarrow{}{}\mRightarrow{}  x  <  y)
Date html generated:
2018_05_22-PM-03_18_11
Last ObjectModification:
2017_10_06-PM-04_08_47
Theory : reals_2
Home
Index