Nuprl Lemma : sinh_wf
∀[x:ℝ]. (sinh(x) ∈ ℝ)
Proof
Definitions occuring in Statement : 
sinh: sinh(x)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
false: False
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
int_nzero: ℤ-o
, 
sinh: sinh(x)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rminus_wf, 
rexp_wf, 
req_wf, 
real_wf, 
expr_wf, 
rsub_wf, 
nequal_wf, 
true_wf, 
equal-wf-base, 
int_subtype_base, 
subtype_base_sq, 
int-rdiv_wf
Rules used in proof : 
axiomEquality, 
because_Cache, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
baseClosed, 
voidElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
hypothesis, 
independent_isectElimination, 
intEquality, 
cumulativity, 
instantiate, 
lambdaFormation, 
addLevel, 
natural_numberEquality, 
dependent_set_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x:\mBbbR{}].  (sinh(x)  \mmember{}  \mBbbR{})
Date html generated:
2016_11_08-AM-09_09_26
Last ObjectModification:
2016_10_30-PM-06_41_18
Theory : reals_2
Home
Index