Nuprl Lemma : sinh_wf

[x:ℝ]. (sinh(x) ∈ ℝ)


Proof




Definitions occuring in Statement :  sinh: sinh(x) real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B prop: false: False guard: {T} all: x:A. B[x] sq_type: SQType(T) uimplies: supposing a implies:  Q not: ¬A nequal: a ≠ b ∈  true: True int_nzero: -o sinh: sinh(x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rminus_wf rexp_wf req_wf real_wf expr_wf rsub_wf nequal_wf true_wf equal-wf-base int_subtype_base subtype_base_sq int-rdiv_wf
Rules used in proof :  axiomEquality because_Cache setEquality rename setElimination lambdaEquality applyEquality hypothesisEquality baseClosed voidElimination independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination hypothesis independent_isectElimination intEquality cumulativity instantiate lambdaFormation addLevel natural_numberEquality dependent_set_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x:\mBbbR{}].  (sinh(x)  \mmember{}  \mBbbR{})



Date html generated: 2016_11_08-AM-09_09_26
Last ObjectModification: 2016_10_30-PM-06_41_18

Theory : reals_2


Home Index