Nuprl Lemma : expr_wf

[x:ℝ]. (expr(x) ∈ {y:ℝe^x} )


Proof




Definitions occuring in Statement :  expr: expr(x) rexp: e^x req: y real: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T converges-to-rexp-ext subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: expr: expr(x) approx-rexp: approx-rexp(x;n) real: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False has-value: (a)↓
Lemmas referenced :  converges-to-rexp-ext subtype_rel_self real_wf converges-to_wf approx-rexp_wf istype-nat rexp_wf req-from-converges istype-less_than subtype_base_sq int_subtype_base istype-int value-type-has-value int-value-type req_inversion req_wf converges-cauchy-witness cauchy-limit_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin instantiate extract_by_obid hypothesis sqequalRule sqequalHypSubstitution isectElimination functionEquality lambdaEquality_alt hypothesisEquality equalityTransitivity equalitySymmetry addEquality divideEquality setElimination rename because_Cache dependent_set_memberEquality_alt closedConclusion natural_numberEquality independent_pairFormation imageMemberEquality baseClosed lambdaFormation_alt cumulativity intEquality independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination equalityIstype sqequalBase inhabitedIsType callbyvalueReduce axiomEquality universeIsType

Latex:
\mforall{}[x:\mBbbR{}].  (expr(x)  \mmember{}  \{y:\mBbbR{}|  y  =  e\^{}x\}  )



Date html generated: 2019_10_31-AM-06_11_34
Last ObjectModification: 2019_01_30-PM-02_43_54

Theory : reals_2


Home Index