Nuprl Lemma : cat-comp-isomorphism

C:SmallCategory. ∀a,b,c:cat-ob(C). ∀f:cat-arrow(C) b. ∀g:cat-arrow(C) c.
  (cat-isomorphism(C;a;b;f)  cat-isomorphism(C;b;c;g)  cat-isomorphism(C;a;c;cat-comp(C) g))


Proof




Definitions occuring in Statement :  cat-isomorphism: cat-isomorphism(C;x;y;f) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory all: x:A. B[x] implies:  Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q cat-isomorphism: cat-isomorphism(C;x;y;f) exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] cand: c∧ B cat-inverse: fg=1 true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  cat-isomorphism_wf cat-arrow_wf cat-ob_wf small-category_wf cat-comp_wf cat-inverse_wf equal_wf iff_weakening_equal cat-comp-ident2 squash_wf true_wf cat-comp-assoc cat-comp-ident1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin rename cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality dependent_pairFormation independent_pairFormation productEquality equalityUniverse levelHypothesis equalityTransitivity equalitySymmetry natural_numberEquality because_Cache lambdaEquality imageElimination sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination dependent_functionElimination universeEquality

Latex:
\mforall{}C:SmallCategory.  \mforall{}a,b,c:cat-ob(C).  \mforall{}f:cat-arrow(C)  a  b.  \mforall{}g:cat-arrow(C)  b  c.
    (cat-isomorphism(C;a;b;f)
    {}\mRightarrow{}  cat-isomorphism(C;b;c;g)
    {}\mRightarrow{}  cat-isomorphism(C;a;c;cat-comp(C)  a  b  c  f  g))



Date html generated: 2017_10_05-AM-00_45_45
Last ObjectModification: 2017_07_28-AM-09_19_04

Theory : small!categories


Home Index