Nuprl Lemma : cat-comp-isomorphism
∀C:SmallCategory. ∀a,b,c:cat-ob(C). ∀f:cat-arrow(C) a b. ∀g:cat-arrow(C) b c.
  (cat-isomorphism(C;a;b;f) 
⇒ cat-isomorphism(C;b;c;g) 
⇒ cat-isomorphism(C;a;c;cat-comp(C) a b c f g))
Proof
Definitions occuring in Statement : 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
cat-inverse: fg=1
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
cat-isomorphism_wf, 
cat-arrow_wf, 
cat-ob_wf, 
small-category_wf, 
cat-comp_wf, 
cat-inverse_wf, 
equal_wf, 
iff_weakening_equal, 
cat-comp-ident2, 
squash_wf, 
true_wf, 
cat-comp-assoc, 
cat-comp-ident1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
equalityUniverse, 
levelHypothesis, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
because_Cache, 
lambdaEquality, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}C:SmallCategory.  \mforall{}a,b,c:cat-ob(C).  \mforall{}f:cat-arrow(C)  a  b.  \mforall{}g:cat-arrow(C)  b  c.
    (cat-isomorphism(C;a;b;f)
    {}\mRightarrow{}  cat-isomorphism(C;b;c;g)
    {}\mRightarrow{}  cat-isomorphism(C;a;c;cat-comp(C)  a  b  c  f  g))
Date html generated:
2017_10_05-AM-00_45_45
Last ObjectModification:
2017_07_28-AM-09_19_04
Theory : small!categories
Home
Index