Nuprl Lemma : groupoid-right-cancellation
∀[G:Groupoid]. ∀[x,y,z:cat-ob(cat(G))]. ∀[a,b:cat-arrow(cat(G)) x y]. ∀[c:cat-arrow(cat(G)) y z].
uiff((cat-comp(cat(G)) x y z a c) = (cat-comp(cat(G)) x y z b c) ∈ (cat-arrow(cat(G)) x z);a
= b
∈ (cat-arrow(cat(G)) x y))
Proof
Definitions occuring in Statement :
groupoid-cat: cat(G)
,
groupoid: Groupoid
,
cat-comp: cat-comp(C)
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
prop: ℙ
,
true: True
,
squash: ↓T
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal_wf,
cat-arrow_wf,
groupoid-cat_wf,
cat-comp_wf,
and_wf,
cat-ob_wf,
groupoid_wf,
groupoid-inv_wf,
squash_wf,
true_wf,
cat-comp-assoc,
groupoid_inv,
cat-comp-ident,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
hypothesisEquality,
equalitySymmetry,
dependent_set_memberEquality,
applyLambdaEquality,
setElimination,
rename,
productElimination,
equalityTransitivity,
functionEquality,
sqequalRule,
independent_pairEquality,
isect_memberEquality,
axiomEquality,
because_Cache,
natural_numberEquality,
lambdaEquality,
imageElimination,
universeEquality,
dependent_functionElimination,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}[G:Groupoid]. \mforall{}[x,y,z:cat-ob(cat(G))]. \mforall{}[a,b:cat-arrow(cat(G)) x y]. \mforall{}[c:cat-arrow(cat(G)) y z].
uiff((cat-comp(cat(G)) x y z a c) = (cat-comp(cat(G)) x y z b c);a = b)
Date html generated:
2017_10_05-AM-00_49_12
Last ObjectModification:
2017_07_28-AM-09_20_11
Theory : small!categories
Home
Index