Nuprl Lemma : rep-pre-sheaf_wf
∀[C:SmallCategory]. ∀[X:cat-ob(C)].  (rep-pre-sheaf(C;X) ∈ Functor(op-cat(C);TypeCat))
Proof
Definitions occuring in Statement : 
rep-pre-sheaf: rep-pre-sheaf(C;X), 
type-cat: TypeCat, 
op-cat: op-cat(C), 
cat-functor: Functor(C1;C2), 
cat-ob: cat-ob(C), 
small-category: SmallCategory, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
cand: A c∧ B, 
and: P ∧ Q, 
compose: f o g, 
cat-id: cat-id(C), 
subtype_rel: A ⊆r B, 
pi2: snd(t), 
pi1: fst(t), 
spreadn: spread4, 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
type-cat: TypeCat, 
cat-arrow: cat-arrow(C), 
cat-comp: cat-comp(C), 
small-category: SmallCategory, 
cat-functor: Functor(C1;C2), 
rep-pre-sheaf: rep-pre-sheaf(C;X), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-comp_wf, 
cat-id_wf, 
type-cat_wf, 
cat-arrow_wf, 
equal_wf, 
op-cat_wf, 
cat-ob_wf, 
all_wf, 
subtype_rel_self
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeEquality, 
instantiate, 
productEquality, 
independent_pairFormation, 
dependent_functionElimination, 
functionExtensionality, 
lambdaFormation, 
functionEquality, 
because_Cache, 
cumulativity, 
hypothesis, 
isectElimination, 
lemma_by_obid, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
dependent_pairEquality, 
sqequalRule, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
dependent_set_memberEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:cat-ob(C)].    (rep-pre-sheaf(C;X)  \mmember{}  Functor(op-cat(C);TypeCat))
Date html generated:
2016_05_18-AM-11_53_27
Last ObjectModification:
2015_12_28-PM-02_23_30
Theory : small!categories
Home
Index