Nuprl Lemma : RankEx4_Foo_wf
∀[foo:ℤ + RankEx4()]. (RankEx4_Foo(foo) ∈ RankEx4())
Proof
Definitions occuring in Statement : 
RankEx4_Foo: RankEx4_Foo(foo), 
RankEx4: RankEx4(), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
union: left + right, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
RankEx4: RankEx4(), 
RankEx4_Foo: RankEx4_Foo(foo), 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uimplies: b supposing a, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
RankEx4co_size: RankEx4co_size(p), 
RankEx4_size: RankEx4_size(p), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
RankEx4co-ext, 
subtype_rel_union, 
RankEx4_wf, 
RankEx4co_wf, 
ifthenelse_wf, 
eq_atom_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
RankEx4_size_wf, 
nat_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
has-value_wf-partial, 
RankEx4co_size_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
dependent_pairEquality, 
tokenEquality, 
hypothesisEquality, 
applyEquality, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
instantiate, 
universeEquality, 
unionEquality, 
voidEquality, 
productElimination, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
unionElimination, 
equalityEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[foo:\mBbbZ{}  +  RankEx4()].  (RankEx4\_Foo(foo)  \mmember{}  RankEx4())
 Date html generated: 
2016_05_16-AM-09_04_11
 Last ObjectModification: 
2015_12_28-PM-06_48_47
Theory : C-semantics
Home
Index