Nuprl Lemma : ml-maprevappend_wf

[T,A:Type]. ∀[f:A ⟶ T].
  ∀[as:A List]. ∀[bs:T List].  (ml-maprevappend(f;as;bs) ∈ List) supposing valueall-type(T) ∧ valueall-type(A) ∧ A


Proof




Definitions occuring in Statement :  ml-maprevappend: ml-maprevappend(f;as;bs) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B prop:
Lemmas referenced :  ml-maprevappend-sq append_wf map_wf reverse_wf list_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis independent_pairFormation cumulativity functionExtensionality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache productEquality functionEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].
    \mforall{}[as:A  List].  \mforall{}[bs:T  List].    (ml-maprevappend(f;as;bs)  \mmember{}  T  List) 
    supposing  valueall-type(T)  \mwedge{}  valueall-type(A)  \mwedge{}  A



Date html generated: 2017_09_29-PM-05_51_14
Last ObjectModification: 2017_05_19-PM-03_24_00

Theory : ML


Home Index