Nuprl Lemma : spreadcons_wf

[T,A:Type]. ∀[t:T ⟶ (T List) ⟶ A]. ∀[l:T List].  let a.b in t[a;b] ∈ supposing 0 < ||l||


Proof




Definitions occuring in Statement :  spreadcons: spreadcons length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a spreadcons: spreadcons all: x:A. B[x] or: P ∨ Q nil: [] less_than: a < b squash: T less_than': less_than'(a;b) length: ||as|| list_ind: list_ind it: false: False and: P ∧ Q implies:  Q prop: cons: [a b] so_apply: x[s1;s2]
Lemmas referenced :  list-cases equal_wf product_subtype_list less_than_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination imageElimination productElimination voidElimination lambdaFormation equalityTransitivity equalitySymmetry independent_functionElimination promote_hyp hypothesis_subsumption applyEquality functionExtensionality cumulativity axiomEquality natural_numberEquality isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[t:T  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  A].  \mforall{}[l:T  List].    let  a.b  =  l  in  t[a;b]  \mmember{}  A  supposing  0  <  ||l||



Date html generated: 2017_09_29-PM-05_50_50
Last ObjectModification: 2017_05_10-PM-02_29_10

Theory : ML


Home Index