Nuprl Lemma : spreadcons_wf
∀[T,A:Type]. ∀[t:T ⟶ (T List) ⟶ A]. ∀[l:T List].  let a.b = l in t[a;b] ∈ A supposing 0 < ||l||
Proof
Definitions occuring in Statement : 
spreadcons: spreadcons, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
spreadcons: spreadcons, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
nil: []
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
length: ||as||
, 
list_ind: list_ind, 
it: ⋅
, 
false: False
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
cons: [a / b]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list-cases, 
equal_wf, 
product_subtype_list, 
less_than_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
productElimination, 
voidElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyEquality, 
functionExtensionality, 
cumulativity, 
axiomEquality, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[t:T  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  A].  \mforall{}[l:T  List].    let  a.b  =  l  in  t[a;b]  \mmember{}  A  supposing  0  <  ||l||
Date html generated:
2017_09_29-PM-05_50_50
Last ObjectModification:
2017_05_10-PM-02_29_10
Theory : ML
Home
Index