Nuprl Lemma : test-arith
∀[x,y,z:ℤ].  (((y + 1) ≤ x) 
⇒ ((z + 1) ≤ y) 
⇒ ((x + (-1)) ≤ z) 
⇒ False)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
false: False
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
false: False
, 
uimplies: b supposing a
, 
subtract: n - m
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
le_wf, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
add-commutes, 
minus-minus, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
addEquality, 
hypothesisEquality, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
intEquality, 
because_Cache, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
independent_isectElimination, 
voidEquality, 
multiplyEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[x,y,z:\mBbbZ{}].    (((y  +  1)  \mleq{}  x)  {}\mRightarrow{}  ((z  +  1)  \mleq{}  y)  {}\mRightarrow{}  ((x  +  (-1))  \mleq{}  z)  {}\mRightarrow{}  False)
Date html generated:
2016_05_13-PM-03_31_52
Last ObjectModification:
2015_12_26-AM-09_45_59
Theory : arithmetic
Home
Index