Nuprl Lemma : AF-spread-law_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (AF-spread-law(x,y.R[x;y]) ∈ n:ℕ ⟶ (ℕn ⟶ (T?)) ⟶ (T?) ⟶ ℙ)


Proof




Definitions occuring in Statement :  AF-spread-law: AF-spread-law(x,y.R[x; y]) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T AF-spread-law: AF-spread-law(x,y.R[x; y]) implies:  Q prop: nat: so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s1;s2] uimplies: supposing a outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  assert_wf isl_wf unit_wf2 all_wf int_seg_wf not_wf outl_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis natural_numberEquality setElimination rename productEquality because_Cache applyEquality independent_isectElimination unionElimination voidElimination unionEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (AF-spread-law(x,y.R[x;y])  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  (T?))  {}\mrightarrow{}  (T?)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_50_56
Last ObjectModification: 2015_12_26-AM-10_17_25

Theory : bar-induction


Home Index