Nuprl Lemma : AF-spread-law_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (AF-spread-law(x,y.R[x;y]) ∈ n:ℕ ⟶ (ℕn ⟶ (T?)) ⟶ (T?) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
AF-spread-law: AF-spread-law(x,y.R[x; y])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
AF-spread-law: AF-spread-law(x,y.R[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
outl: outl(x)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
assert_wf, 
isl_wf, 
unit_wf2, 
all_wf, 
int_seg_wf, 
not_wf, 
outl_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
productEquality, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
unionElimination, 
voidElimination, 
unionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (AF-spread-law(x,y.R[x;y])  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  (T?))  {}\mrightarrow{}  (T?)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_50_56
Last ObjectModification:
2015_12_26-AM-10_17_25
Theory : bar-induction
Home
Index