Nuprl Lemma : genFAN_wf

[T:ℕ ⟶ Type]
  ∀[max:∀i:ℕBounded(T[i])]. ∀[X:n:ℕ ⟶ (i:ℕn ⟶ T[i]) ⟶ ℙ].
    ∀[d:∀n:ℕ. ∀s:i:ℕn ⟶ T[i].  Dec(X[n;s])]. (genFAN(max;d) ∈ {k:ℕ| ∀f:i:ℕ ⟶ T[i]. ∃n:ℕk. X[n;f]} 
    supposing ∀f:i:ℕ ⟶ T[i]. (↓∃n:ℕX[n;f]) 
  supposing ∀i:ℕT[i]


Proof




Definitions occuring in Statement :  genFAN: genFAN(max;d) bounded-type: Bounded(T) int_seg: {i..j-} nat: decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] squash: T member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  lelt: i ≤ j < k int_seg: {i..j-} sq_exists: x:A [B[x]] istype: istype(T) not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B so_lambda: λ2x.t[x] exists: x:A. B[x] nat: prop: subtype_rel: A ⊆B so_apply: x[s1;s2] so_apply: x[s] implies:  Q all: x:A. B[x] simple_more_general_fan_theorem-ext int_seg_decide: int_seg_decide(d;i;j) ifthenelse: if then else fi  bar_recursion: bar_recursion genFAN: genFAN(max;d) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe decidable_wf istype-false int_seg_subtype_nat subtype_rel_dep_function nat_wf squash_wf int_seg_wf bounded-type_wf istype-nat simple_more_general_fan_theorem-ext
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt axiomEquality instantiate productElimination productIsType setIsType independent_pairFormation independent_isectElimination productEquality universeEquality setElimination natural_numberEquality because_Cache universeIsType extract_by_obid functionIsType isectIsType independent_functionElimination dependent_functionElimination equalityIstype rename sqequalHypSubstitution thin lambdaFormation_alt inhabitedIsType hypothesis equalitySymmetry equalityTransitivity hypothesisEquality isectElimination lambdaEquality_alt applyEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:\mBbbN{}  {}\mrightarrow{}  Type]
    \mforall{}[max:\mforall{}i:\mBbbN{}.  Bounded(T[i])].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (i:\mBbbN{}n  {}\mrightarrow{}  T[i])  {}\mrightarrow{}  \mBbbP{}].
        \mforall{}[d:\mforall{}n:\mBbbN{}.  \mforall{}s:i:\mBbbN{}n  {}\mrightarrow{}  T[i].    Dec(X[n;s])].  (genFAN(max;d)  \mmember{}  \{k:\mBbbN{}|  \mforall{}f:i:\mBbbN{}  {}\mrightarrow{}  T[i].  \mexists{}n:\mBbbN{}k.  X[n;f]\}  \000C) 
        supposing  \mforall{}f:i:\mBbbN{}  {}\mrightarrow{}  T[i].  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f]) 
    supposing  \mforall{}i:\mBbbN{}.  T[i]



Date html generated: 2019_10_15-AM-10_20_21
Last ObjectModification: 2019_10_07-PM-04_41_41

Theory : bar-induction


Home Index