Nuprl Lemma : assert-pushdown-test
∀C:𝔹. ↑((C ∧b C) ∨bC) supposing ↑(C ∧b C)
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
band: p ∧b q
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
true: True
, 
bfalse: ff
, 
false: False
Lemmas referenced : 
iff_transitivity, 
assert_wf, 
bor_wf, 
band_wf, 
or_wf, 
and_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_band, 
bool_cases_sqequal, 
assert_witness, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
independent_pairFormation, 
orFunctionality, 
productElimination, 
independent_isectElimination, 
inlFormation, 
unionElimination, 
sqequalRule, 
natural_numberEquality, 
voidElimination
Latex:
\mforall{}C:\mBbbB{}.  \muparrow{}((C  \mwedge{}\msubb{}  C)  \mvee{}\msubb{}C)  supposing  \muparrow{}(C  \mwedge{}\msubb{}  C)
Date html generated:
2016_05_13-PM-03_57_44
Last ObjectModification:
2015_12_26-AM-10_51_20
Theory : bool_1
Home
Index