Nuprl Lemma : assert-pushdown-test

C:𝔹. ↑((C ∧b C) ∨bC) supposing ↑(C ∧b C)


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q assert: b bool: 𝔹 uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) prop: rev_implies:  Q or: P ∨ Q cand: c∧ B btrue: tt band: p ∧b q ifthenelse: if then else fi  assert: b true: True bfalse: ff false: False
Lemmas referenced :  iff_transitivity assert_wf bor_wf band_wf or_wf and_wf iff_weakening_uiff assert_of_bor assert_of_band bool_cases_sqequal assert_witness bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination because_Cache dependent_functionElimination independent_pairFormation orFunctionality productElimination independent_isectElimination inlFormation unionElimination sqequalRule natural_numberEquality voidElimination

Latex:
\mforall{}C:\mBbbB{}.  \muparrow{}((C  \mwedge{}\msubb{}  C)  \mvee{}\msubb{}C)  supposing  \muparrow{}(C  \mwedge{}\msubb{}  C)



Date html generated: 2016_05_13-PM-03_57_44
Last ObjectModification: 2015_12_26-AM-10_51_20

Theory : bool_1


Home Index