Nuprl Lemma : assert_equal

[a,b:𝔹].  uiff((↑a) (↑b) ∈ Type;↑⇐⇒ ↑b)


Proof




Definitions occuring in Statement :  assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q implies:  Q guard: {T} rev_implies:  Q prop: squash: T true: True subtype_rel: A ⊆B
Lemmas referenced :  bool_wf iff_wf iff_imp_equal_bool equal_wf assert_witness assert_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis equalitySymmetry lemma_by_obid sqequalHypSubstitution isectElimination thin equalityTransitivity independent_isectElimination productElimination independent_functionElimination hypothesisEquality sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination instantiate universeEquality applyEquality imageElimination because_Cache natural_numberEquality imageMemberEquality baseClosed isect_memberEquality axiomEquality

Latex:
\mforall{}[a,b:\mBbbB{}].    uiff((\muparrow{}a)  =  (\muparrow{}b);\muparrow{}a  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}b)



Date html generated: 2016_05_13-PM-03_56_27
Last ObjectModification: 2016_01_14-PM-07_20_47

Theory : bool_1


Home Index