Nuprl Lemma : bor-simplify

[b:𝔹]. ∀[f:Top].  (b ∨bf[b] b ∨bf[ff])


Proof




Definitions occuring in Statement :  bor: p ∨bq bfalse: ff bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bor: p ∨bq ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination because_Cache voidElimination sqequalAxiom isect_memberEquality

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[f:Top].    (b  \mvee{}\msubb{}f[b]  \msim{}  b  \mvee{}\msubb{}f[ff])



Date html generated: 2017_04_14-AM-07_30_51
Last ObjectModification: 2017_02_27-PM-02_59_26

Theory : bool_1


Home Index