Nuprl Lemma : bor-simplify
∀[b:𝔹]. ∀[f:Top]. (b ∨bf[b] ~ b ∨bf[ff])
Proof
Definitions occuring in Statement :
bor: p ∨bq
,
bfalse: ff
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
bor: p ∨bq
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
Lemmas referenced :
bool_wf,
eqtt_to_assert,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
hypothesisEquality,
thin,
extract_by_obid,
hypothesis,
lambdaFormation,
sqequalHypSubstitution,
unionElimination,
equalityElimination,
isectElimination,
productElimination,
independent_isectElimination,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
because_Cache,
voidElimination,
sqequalAxiom,
isect_memberEquality
Latex:
\mforall{}[b:\mBbbB{}]. \mforall{}[f:Top]. (b \mvee{}\msubb{}f[b] \msim{} b \mvee{}\msubb{}f[ff])
Date html generated:
2017_04_14-AM-07_30_51
Last ObjectModification:
2017_02_27-PM-02_59_26
Theory : bool_1
Home
Index