Nuprl Lemma : ifthenelse-simplify2

[b,c:𝔹]. ∀[x,y:Top].  (if then if then else fi  if b ∨bthen else fi )


Proof




Definitions occuring in Statement :  bor: p ∨bq ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  top: Top bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False bor: p ∨bq
Lemmas referenced :  bool_wf eqtt_to_assert testxxx_lemma top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalAxiom because_Cache dependent_pairFormation promote_hyp instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[b,c:\mBbbB{}].  \mforall{}[x,y:Top].    (if  b  then  x  if  c  then  x  else  y  fi    \msim{}  if  b  \mvee{}\msubb{}c  then  x  else  y  fi  )



Date html generated: 2017_04_14-AM-07_31_58
Last ObjectModification: 2017_02_27-PM-02_59_54

Theory : bool_1


Home Index