Nuprl Lemma : Wzero-leq

[A:Type]. ∀[B:A ⟶ Type].  ∀w:W(A;a.B[a]). (isZero(w) ⇐⇒ ∀w2:W(A;a.B[a]). (w ≤  w2))


Proof




Definitions occuring in Statement :  Wzero: isZero(w) Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) btrue: tt uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y implies:  Q all: x:A. B[x] Wsup: Wsup(a;b) Wcmp: Wcmp(A;a.B[a];leq) ifthenelse: if then else fi  btrue: tt Wzero: isZero(w) pi1: fst(t) iff: ⇐⇒ Q and: P ∧ Q not: ¬A false: False prop: subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  W-induction iff_wf Wzero_wf all_wf W_wf Wcmp_wf btrue_wf not_wf bfalse_wf infix_ap_wf Wless_antireflexive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination lambdaFormation independent_pairFormation voidElimination because_Cache cumulativity instantiate universeEquality functionEquality rename dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}w:W(A;a.B[a]).  (isZero(w)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}w2:W(A;a.B[a]).  (w  \mleq{}    w2))



Date html generated: 2016_05_14-AM-06_16_39
Last ObjectModification: 2015_12_26-PM-00_04_22

Theory : co-recursion


Home Index