Nuprl Lemma : stream-lex_transitivity-proof2

T:Type. ∀R:T ⟶ T ⟶ ℙ.  (Trans(T;x,y.x y)  AntiSym(T;x,y.x y)  Trans(stream(T);s1,s2.s1 stream-lex(T;R) s2))


Proof




Definitions occuring in Statement :  stream-lex: stream-lex(T;R) stream: stream(A) anti_sym: AntiSym(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q infix_ap: y subtype_rel: A ⊆B so_apply: x[s] stream-lex: stream-lex(T;R) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rel-monotone: rel-monotone{i:l}(T;R.F[R]) rel_implies: R1 => R2 cand: c∧ B guard: {T} exists: x:A. B[x] iff: ⇐⇒ Q trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  implies-bigrel stream_wf s-hd_wf equal_wf s-tl_wf anti_sym_wf trans_wf all_wf exists_wf stream-lex_wf stream-lex-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality productEquality applyEquality functionExtensionality universeEquality functionEquality because_Cache independent_functionElimination productElimination independent_pairFormation promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity dependent_pairFormation

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (Trans(T;x,y.x  R  y)  {}\mRightarrow{}  AntiSym(T;x,y.x  R  y)  {}\mRightarrow{}  Trans(stream(T);s1,s2.s1  stream-lex(T;R)  s2))



Date html generated: 2017_04_14-AM-07_48_12
Last ObjectModification: 2017_02_27-PM-03_18_25

Theory : co-recursion


Home Index