Nuprl Lemma : stream-lex_transitivity-proof2
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.  (Trans(T;x,y.x R y) 
⇒ AntiSym(T;x,y.x R y) 
⇒ Trans(stream(T);s1,s2.s1 stream-lex(T;R) s2))
Proof
Definitions occuring in Statement : 
stream-lex: stream-lex(T;R)
, 
stream: stream(A)
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
stream-lex: stream-lex(T;R)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rel-monotone: rel-monotone{i:l}(T;R.F[R])
, 
rel_implies: R1 => R2
, 
cand: A c∧ B
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
trans: Trans(T;x,y.E[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
implies-bigrel, 
stream_wf, 
s-hd_wf, 
equal_wf, 
s-tl_wf, 
anti_sym_wf, 
trans_wf, 
all_wf, 
exists_wf, 
stream-lex_wf, 
stream-lex-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
functionEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
equalityTransitivity, 
dependent_pairFormation
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (Trans(T;x,y.x  R  y)  {}\mRightarrow{}  AntiSym(T;x,y.x  R  y)  {}\mRightarrow{}  Trans(stream(T);s1,s2.s1  stream-lex(T;R)  s2))
Date html generated:
2017_04_14-AM-07_48_12
Last ObjectModification:
2017_02_27-PM-03_18_25
Theory : co-recursion
Home
Index