Nuprl Lemma : normalize-decide-left
∀[a,F,G:Top]. (case a of inl(x) => F[x] a | inr(x) => G[x] ~ case a of inl(x) => F[x] (inl x) | inr(x) => G[x])
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
apply: f a
,
decide: case b of inl(x) => s[x] | inr(y) => t[y]
,
inl: inl x
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
has-value: (a)↓
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
implies: P
⇒ Q
,
guard: {T}
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
Lemmas referenced :
assert_of_bnot,
eqff_to_assert,
is-exception_wf,
has-value_wf_base,
eqtt_to_assert,
bool_subtype_base,
bool_wf,
subtype_base_sq,
bool_cases,
top_wf,
isl_wf,
injection-eta
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalSqle,
sqleRule,
thin,
divergentSqle,
callbyvalueDecide,
sqequalHypSubstitution,
hypothesis,
lemma_by_obid,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
isectElimination,
because_Cache,
unionElimination,
instantiate,
cumulativity,
independent_isectElimination,
independent_functionElimination,
productElimination,
sqequalRule,
sqleReflexivity,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
decideExceptionCases,
axiomSqleEquality,
exceptionSqequal,
sqequalAxiom,
isect_memberEquality
Latex:
\mforall{}[a,F,G:Top].
(case a of inl(x) => F[x] a | inr(x) => G[x] \msim{} case a of inl(x) => F[x] (inl x) | inr(x) => G[x])
Date html generated:
2016_05_13-PM-03_43_21
Last ObjectModification:
2016_01_14-PM-07_08_30
Theory : computation
Home
Index