Nuprl Lemma : MP+KS-imply-LEM

(∀P:ℕ ⟶ ℙ((∀n:ℕDec(P[n]))  (∀n:ℕP[n])))  (∃n:ℕP[n])))
 (∀A:ℙ. ∃a:ℕ ⟶ ℕ(A ⇐⇒ ∃n:ℕ((a n) 1 ∈ ℤ)))
 (∀P:ℙ(P ∨ P)))


Proof




Definitions occuring in Statement :  nat: decidable: Dec(P) prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  guard: {T} false: False or: P ∨ Q not: ¬A and: P ∧ Q rev_implies:  Q iff: ⇐⇒ Q exists: x:A. B[x] so_apply: x[s] nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T all: x:A. B[x] implies:  Q
Lemmas referenced :  decidable__int_equal not-not-excluded-middle or_wf not_wf decidable_wf equal-wf-T-base iff_wf nat_wf exists_wf all_wf
Rules used in proof :  natural_numberEquality voidElimination promote_hyp because_Cache impliesFunctionality independent_functionElimination productElimination dependent_functionElimination baseClosed rename setElimination functionExtensionality applyEquality intEquality hypothesisEquality hypothesis functionEquality cumulativity lambdaEquality sqequalRule isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut universeEquality lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  (\mneg{}(\mforall{}n:\mBbbN{}.  (\mneg{}P[n])))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  P[n])))
{}\mRightarrow{}  (\mforall{}A:\mBbbP{}.  \mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (A  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((a  n)  =  1)))
{}\mRightarrow{}  (\mforall{}P:\mBbbP{}.  (P  \mvee{}  (\mneg{}P)))



Date html generated: 2017_04_20-AM-07_36_03
Last ObjectModification: 2017_04_10-PM-05_57_57

Theory : continuity


Home Index