Nuprl Lemma : WCPD_wf
∀F,H:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)} .
  (WCPD(F;H;f;G) ∈ {n:ℕ+| F f = F (G n) ∧ H f = H (G n)} )
Proof
Definitions occuring in Statement : 
WCPD: WCPD(F;H;f;G), 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
bool: 𝔹, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
WCPD: WCPD(F;H;f;G), 
weak-continuity-principle-nat+-int-bool-double-ext, 
pi1: fst(t), 
prop: ℙ, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
uimplies: b supposing a, 
so_apply: x[s], 
nat_plus: ℕ+, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
set_wf, 
bool_wf, 
exists_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat_plus, 
nat_plus_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
equal_wf, 
all_wf, 
weak-continuity-principle-nat+-int-bool-double-ext
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
productElimination, 
productEquality, 
independent_pairFormation, 
independent_isectElimination, 
intEquality, 
rename, 
setElimination, 
natural_numberEquality, 
setEquality, 
functionEquality, 
isectElimination, 
introduction, 
lambdaEquality, 
because_Cache, 
hypothesisEquality, 
sqequalHypSubstitution, 
sqequalRule, 
functionExtensionality, 
applyEquality, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}F,H:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .
    (WCPD(F;H;f;G)  \mmember{}  \{n:\mBbbN{}\msupplus{}|  F  f  =  F  (G  n)  \mwedge{}  H  f  =  H  (G  n)\}  )
Date html generated:
2017_09_29-PM-06_06_33
Last ObjectModification:
2017_09_12-PM-02_15_31
Theory : continuity
Home
Index